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1 Introduction

Divisors are one of the most important parts of number theory. Each number has
special characteristics because of the divisors it has, so investigating what numbers
divide a given number can lead to important insights on a problem. In this handout,
we’ll learn about prime factorizations, the greatest common divisor, least common
multiple, and some ways to apply these concepts.

2 What is a Divisor?

Definition 1 (Divisor). Let a, b be integers. If we can write a = bk, where k is also
an integer, then we can say b is a divisor of k.

This definition is a little difficult to understand, so consider 6 = 2 · 3. Because you
can multiply 2 by an integer to get 6, we know 2 is a divisor of 6. Moreover, 3 is a
divisor of 6.

However, we know 4 isn’t a divisor of 6 because 6 = 4 · 1.5 and 1.5 isn’t an inte-
ger.

Example 1. How many divisors does 12 have?

Solution: We can go through all the integers less than 12 and see which ones can
be multiplied by another integer to get a product of 12. We don’t have to consider
integers greater than 12 since any number greater than 12 will have to be multiplied
by a number between 0 and 1 to produce 12.
We then have {1, 2, 3, 4, 6, 12} as the set of divisors of 12.

3 Prime Numbers

Definition 2 (Prime). An integer is said to be prime if its only divisors are 1 and
itself.

Definition 3 (Composite). An integer is composite if it can be written as a product
of two integers that are not 1 or itself. That is, it has divisors besides 1 and itself.
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There is often a conflict about whether 1 is prime or not. It can be written as a
product of 1 and itself (1 · 1 = 1), since ”itself” is 1. However, 1 is not considered
prime because this product is not one of two distinct integers.

Example 2. What are the prime numbers less than 20?

Solution: We can test each of the number less than 20 see if it has divisors besides
1 and itself. This gives {2, 3, 5, 7, 11, 13, 17, 19}.

Theorem 1 (Fundamental Theorem of Arithmetic). Every integer greater than 1
can be represented uniquely as a product of prime numbers, up to the order of the
factors.

This represents one of the most important theorems in number theory. More simply,
it says that we can represent every integer greater than 1 as a product of prime num-
bers. Moreover, there is only one of these representations for an integer.

The ”order of the factors” means that when we write the integer as a product of
primes, it doesn’t matter if we change the order of the primes in the product. For
instance, 2 · 3 · 2 is the same as 2 · 2 · 3.

The Fundamental Theorem of Arithmetic (FTA for short) introduces an essential
problem solving technique: finding the prime factorization of a number.

Definition 4 (Prime Factorization). The representation of an integer as a product
of only prime numbers.

Example 3. The prime factorization of 84 is 22 · 3 · 7 since 42 = 22 · 3 · 7 and 2,3 and
7 are all prime numbers. The FTA tells us that this is the only prime factorization
of 42.

The prime factorization of a number reveals a lot of information. Above, we know
that 2, 3, and 7 all divide 84. We also know 84 has exactly 2 powers of 2 in its product.

Note that there is no clear way to find the prime factorization of a number. Generally,
you can try testing smaller primes to see if they divide the number. For instance, I
might try to see if the number is divisible by 2, then 3, and so on...

Theorem 2. There exist infinitely many primes.

Proof. Suppose by way of contradiction that there are finitely many primes p1, p2, . . . , pn,
where n is a positive integer. Consider the integer

Q = p1p2 · · · pn + 1

Because Q > 1, Q must have at least one prime divisor, call it q. If we prove that q
is not one of the primes listed then we obtain a contradiction. Suppose q is one of
the primes listed, say q = pi for i ≤ i ≤ n. Therefore, q divides p1p2 · · · pn. Because q
divides Q and q divides p1p2 · · · pn, we know q divides Q− p1p2 · · · pn = 1. However,
there is not prime that divides 1. Hence, we have a contradiction and q is not one of
the primes listed.
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It might seem intuitive that there are infinitely many prime numbers. But how do
we determine where primes occur? Sometimes prime numbers appear very close to
each other, like 11 and 13, or 101 and 103. These are called twin primes. But often
there are large gaps between one prime number and the next smallest prime. It is
still unknown how to predict the size of these gaps between primes.

Definition 5 (Relatively Prime). Two integers a and b are said to be relatively prime
if they share no common divisors besides 1.

For example, 3 and 7 are relatively prime because the only common factor they share
is 1. However, 5 and 10 are not relatively prime because they both have 5 as a factor.
Relatively prime integers become more important as you explore number theory
deeper because it is often the case that special properties are true only when the
integers involved are relatively prime.

4 Greatest Common Divisor

Definition 6 (Greatest Common Divisor). Given two integers a and b, the greatest
common divisor of a and b, denoted by gcd(a, b), is the greatest of all divisors of both
a and b.

Example 4. Consider the following GCD calculations:
gcd(5, 10) = 5
gcd(3, 7) = 1
gcd(16, 24) = 4

There are two GCD calculations that are important to know when performing pro-
cedures such as the Euclidean Algorithm (by the time you’re reading this you might
be able to find a handout on the Euclidean Algorithm under Number Theory in Re-
sources at desmoinesmathcircle.org).

First, gcd(a, 1) = 1 for any integer a. This is because the only divisor of 1 is 1,
so the greatest common divisor between any integer and 1 is also 1.
Second, gcd(a, 0) = a for any integer a. This is because any integer can be interpreted
as a factor of 0 since 0 = a · 0. Therefore, a is a divisor of a and 0. It should also be
apparent that a is the greatest divisor of a.

How to Find the GCD of Two Numbers
To obtain a general way to find the greatest common divisor, we can first consider
a concrete example. Suppose we want to find gcd(48, 56). First, we find the prime
factorizations of 24 and 56:

48 = 24 · 31

56 = 23 · 71

We can try to construct the PF (prime factorization) of gcd(48, 56). Any prime that is
in the PF of gcd(48, 56) must be in 48’s PF and 56’s PF. 3 can’t be in gcd(48, 56) since
it’s only a divisor of 48. The same reasoning works for why 7 can’t be in gcd(48, 56).
It might seem obvious, but a prime that is not in either 48 nor 56 cannot be in the
PF of gcd(48, 56). Therefore, a prime such as 13 isn’t a part of the GCD.
Now we have to keep in my mind that we want the greatest common divisor. Hence,
for a given prime in the PF, it must be raised to the highest power common in both
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48 and 46. For instance, 23 will be in the PF of gcd(48, 56). We can’t use 24 since
24 is not a divisor of 56. We don’t want to use 20, 21, or 22 because these are all less
than 23 and wouldn’t result in the largest common divisor.

Using the above logic, we can conclude gcd(48, 56) = 23 = 8. Now we’re ready
to construct a general procedure.

Let a and b be two positive integers. To find gcd(a, b), perform the following steps:

1. Find the prime factorizations of a and b. Then

a = pe11 · pe22 · · · pekk

b = pf11 · pf22 · · · pfkk
where ei and fi, for 1 ≤ i ≤ k are the powers pi are raised to in a and b,
respectively.

2. Consider only the primes that are present in both the PF of a and the PF of b.

3. In the prime factorization of gcd(a, b), pi is raised to min(ei, fi). That is, each
prime is raised to the minimum power it is raised to in the PF of a and b. Hence,

gcd(a, b) = p
min(e1,f1)
1 · pmin(e2,f2)

2 · · · pmin(ek,fk)
k

Put simply, to find the GCD of two numbers, you want to find the numbers’ prime
factorizations then take the minimum powers of the primes presents in both PFs.

Example 5. Find gcd(72, 156).

Solution: We first find the prime factorizations of 72 and 156:

72 = 23 · 32

156 = 22 · 31 · 131

The primes present in both are 2 and 3. The minimum power 2 is raised to is 2 and
the minimum power 3 is raised to is 1. Therefore, gcd(72, 156) = 22 · 31 = 12.

5 Least Common Multiple

First, we should define what a multiple of a number is. Don’t worry, Multiplies are
very similar to divisors.

Definition 7 (Multiple). If a and b are integers, then a is a multiple of b if a can be
written as a = bk, where k is an integer.

Notice the similarity between divisors and multiples. We can say that if a is a divisor
of b, then b is a multiple of a. For instance, 3 is a divisor of 12 and 12 is a multiple
of 3.

Definition 8 (Least Common Multiple). Let a and b be integers. Then consider the
set of all common multiples of a and b. Then the least common multiple of a and b
is the smallest of all these common multiples.
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Example 6. Consider the following LCM calculations:
lcm(5, 10) = 10
lcm(3, 7) 21
lcm(24, 10) = 120

How to Find the LCM of Two Numbers
To derive a general method to finding the least common multiple of two numbers, we
find consider a tangible example. Suppose we want to find lcm(60, 122). We first find
the prime factorizations of 60 and 122:

60 = 22 · 31 · 51

122 = 21 · 611

We can try to construct the prime factorization of lcm(a, b). For a number to be a
multiple of 60, the smallest power of 2 it can have in it’s prime factorization is 22.
Similarly, the smallest power of 3 and 5 it can have are 31 and 51, respectively. You
can apply similar reasoning for 122.
Additionally, if a prime is present in the prime factorization of 60 or 122, it must
present in lcm(a, b). Then we want 22, 31, 51, and 611 so that the prime factorization
is lcm(a, b) = 22 · 31 · 51 · 611. Now we can determine a general method.

Let a and b be two positive integers. To lcm(a, b), perform the following steps:

1. Find the prime factorizations of a and b. Then

a = pe11 · pe22 · · · pekk

b = pf11 · pf22 · · · pfkk
where ei and fi, for 1 ≤ i ≤ k are the powers pi are raised to in a and b,
respectively.

2. Consider all primes that are present in either the PF of a or the PF of b.

3. In the prime factorization of lcm(a, b), pi is raised to max(ei, fi). That is, each
prime is raised to the maximum power it is raised to in the PF of a and b.
Hence,

lcm(a, b) = p
max(e1,f1)
1 · pmax(e2,f2)

2 · · · pmax(ek,fk)
k

Put simply, lcm(a, b) has every prime present in either the prime factorization of a
or the prime factorization of b. For a given prime in the PF of lcm(a, b), it is raised
to the maximum power it is raised to in a and b. For instance, if 2 is raised to the
second power in a and the third power in b, we take 23.

Example 7. Find lcm(42, 98).

Solution: First we find the prime factorizations of 42 and 98:

42 = 21 · 31 · 71

98 = 21 · 72

We know some power of 2, 3, and 7 will be present in the prime factorization of
lcm(42, 98). These powers will be 21, 31, 72. Note that 72 is chosen because 72 > 71.
Therefore, lcm(42, 98) = 21 · 31 · 72 = 294.
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6 Special Functions

There are three well-known functions that can be used to get information about the
divisors of a number. First, there is τ(n) which outputs the number of divisors of n.
τ(n) is likely the most useful of the three functions we’ll cover. Then there is σ(n),
which outputs the sum of the divisors of n. Finally, d(n) outputs the product of the
divisors of n.

Theorem 3 (Number of Divisors). Let the positive integer n have prime factorization

n = pe11 · pe22 · · · pekk

Then the number of divisors of n is given by

τ(n) = (e1 + 1)(e2 + 1)(e3 + 1) · · · (ek + 1)

We can see this in action by finding the number of divisors of 12. The prime factor-
ization of 12 is 12 = 22 · 31, which means τ(12) = (2 + 1)(1 + 1) = 6. Indeed, the 6
divisors of 12 are 1, 2, 3, 4, 6, and 12.

The derivation for τ(n) is relatively simple and follows from a combinatorial ar-
gument. Notice in the example above with 12, the possible powers of 2 for a divisor
of 12 are 20, 21, and, 22. So there are 3 possibilities for the power of 2. Similarly
there are 2 possibilities for the power of 3. Then by the Fundamental Principle of
Counting (if you don’t know what this is, read the Introductory Counting handout
at desmoinesmathcircle.org), there are 3 · 2 = 6 divisors of 12.

By the same reasoning, we can say for a given prime pi, there are ei + 1 choices for
the power pi is raised to so that you get a divisor of n. These are 0, 1, 2, . . . , ei− 1, ei.
Then we multiply the number of choices for each power to get the total number of
divisors, (e1 + 1)(e2 + 1) · · · (ek + 1).

Theorem 4 (Sum of Divisors). Let the positive integer n have prime factorization

n = pe11 · pe22 · · · pekk

Then the number of divisors of n is given by

σ(n) = (1 + p21 + · · · pe11 )(1 + p22 + · · · pe22 ) · · · (1 + p2k + · · · pekk )

Now we can try to find the sum of the divisors of 12.

σ(12) = (1 + 2 + 22)(1 + 3) = (7)(4) = 28

Indeed, 1 + 2 + 3 + 4 + 6 + 12 = 28. It might seem like this expression can become
difficult to evaluate when n is much larger, but each sum can be evaluated simply
using the geometric series formula.

The reason this formula works is because if you expand the product you get the
sum of every divisor of n. If you expand the expression given by σ(12) you’ll get the
sum of the every divisor of 12.
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Theorem 5 (Product of Divisors). Let the positive integer n have prime factorization

n = pe11 · pe22 · · · pekk

Then the product of the divisors of n is given by

d(n) = nτ(n)/2

We can now calculate the product of the divisors of 12. From above, we know
τ(12) = 6. Therefore, d(12) = 126/2 = 123. We can get this same product by direct
computation, (1)(2)(3)(4)(6)(12) = [(1)(12)][(2)(6)][(3)(4)] = (12)(12)(12) = 123.

Notice the method we used above to compute (1)(2)(3)(4)(6)(12). We paired up
the divisors of 12 into pairs that multiplied to 12. This is how we’ll find a closed form
for d(n). Every divisor of n can be paired with another divisor so that their product
is n. There are τ(n) divisors, so we can create τ(n)/2 pairs. Each pair multiplies to
n, so the entire product is d(n) = nτ(n)/2. However, this logic only works if n isn’t a
perfect square, because if n is a perfect square, then what are we supposed to pair√
n with? What we can do is find the product of all the numbers that can be paired

up, then multiply that product by
√
n to get the product of the divisors of n. If n is

a perfect square, then there are τ(n)− 1 divisors that aren’t perfect squares. Hence,
there are (τ(n)−1)/2 pairs and the product of the non-

√
n divisors is nτ(n)−1)/2. After

we multiply by
√
n, we get d(n) = nτ(n)−1)/2 ·

√
n = nτ(n)−1)/2 · n1/2 = nτ(n)/2. We get

the same formula!

Note that we are assured (τ(n)− 1)/2 is an integer because τ(n) must be odd when
n is a perfect square. This is because if n is a perfect square, then the power each
prime in the prime factorization is raised to must be even. Thus, τ(n) is equal to the
product of only odd factors and must be odd.

7 Problem-Solving

Example 8. When a positive two-digit number m is multiplied by a positive three-
digit number n the result is 21210. Find all possible pairs (m,n). (CEMC)

Solution: The prime factorization of 21210 is 21210 = 2 · 3 · 5 · 6 · 101. Since m is a
two-digit number, it cannot have 101 as a divisor. Therefore, n is a multiple of 101.
The prime factorization of n can include at most one 2, at most one 3, at most one
5, and at most one 7.
Since n is a three-digit number, the possible values for n are 101, 202, 303, 505, 606,
and 707. The corresponding values form are 210, 105, 70, 42, 35, and 30, respectively.

Since m is a two-digit number, 210 and 105 are not possible. Therefore, the pos-
sible pairs (m,n) are (70,303), (42, 505), (35,606), and (30, 707).
(Solution from CEMC Properties of Numbers)

Example 9. Find gcd(6, 24, 39)

Solution: Finding the GCD of two numbers is the same as finding the GCD of three
numbers. First, we find the prime factorization of each number: 6 = 21 · 31, 24 =
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23 · 31, 39 = 31 · 131. The only prime that is present in all three PFs is 3 and the
minimum power 3 is raised to is 31. Hence, gcd(6, 24, 39) = 31 = 3 .

Example 10. There are 10 horses, named Horse 1, Horse 2, . . ., Horse 10. They get
their names from how many minutes it takes them to run one lap around a circular
race track. Horse k runs one lap in exactly k minutes. At time 0 all the horses are
together at the starting point on the track at their constant speeds. The least time
S > 0, in minutes, at which all 10 horses will again simultaneously be at the starting
point is S = 2520. Let T > 0 be the least time, in minutes, such that at least 5 of
the horses are again at the starting point. What is the sum of the digits of T?
(2017 AMC 10A)

Solution: Observe that 2520 = lcm(1, 2, 3, 4, 5, 6, 7, 8, 9, 10). This is because the
LCM of all the completion rates should be the first time every horse is at the starting
simultaneously. This realization should inspire how we should find T . We want to
find 5 distinct numbers from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} such that the LCM of the five
numbers is as small as possible. By inspection, we find that lcm(1, 2, 3, 2 · 2, 2 · 3) =
12. Therefore T = 12, and the sum of the digits is 1 + 2 = 3 .
The following identity will be used in the next problem.

Theorem 6. For all positive integers a and b we have

lcm[a, b] · gcd(a, b) = ab

This theorem makes sense given the processes we use to find the GCD and LCM. For
a given prime, the GCD takes the least power and the LCM takes the greatest power.
Hence, both instances of that prime in prime factorizations of a and b are taken. So,
the product of the LCM should have the product the two instances of that prime,
just as ab does. This works for every prime in the PFs.

Example 11. If r is a positive integer such that

lcm[r, 100] · gcd(r, 100) = 13200

then what is lcm[r, 100]?
(Alcumus)

Solution: Theorem 6 says

13200 = lcm[r, 100] · gcd(r, 100) = r · 100

Solving the equation yields r = 132. We want the value of lcm[132, 100] so we find
the prime factorizations of 132 and 100. 132 = 22 · 3 · 11 and 100 = 22 · 52. Then we
take the maximum exponent of each prime present in either prime factorization to
obtain

lcm[132, 100] = 22 · e · 52 · 11 = 3300

Example 12. How many positive integers n are there such that n is a multiple of
5, and the least common multiple of 5! and n equals 5 times the greatest common
divisor of 10! and n?
(2020 AMC 12A)
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Solution: We receive the equation

lcm(5!, n) = 5 gcd(10!, n)

Then we find the prime factorization of 5! and 10! and the equation becomes

lcm(23 · 3 · 5, n) = 5 gcd(28 · 34 · 52 · 7, n)
We can now be certain that the only possible prime divisors of n are 2,3,5, and 7. Now
we determine the restraints on the powers of the prime factors of n. We do this by
considering what values allow the equation to remain true. If the prime factorization
of n is

n = 2a · 3b · 5c · 7d

we have a ∈ [3, 8], b ∈ [1, 4], and 5 ∈ [0, 1]. Determining the powers of 5 that are
allowed is a little more difficult. The power of 5 on the left side of the initial equation
will be 51 or c. However, the power of 5 on the right side of the equation is c + 1 if
c < 2 and 3 if n ≥ 2. Hence, the power of 5 on both sides must be 53 and we have
c = 53. This gives 6 choices for a, 4 choices for b, 1 choice for c, and 2 choices for d,
giving 6 · 4 · 1 · 2 = 48 possibilities for n.

8 Exercises

Problem 1. A number has exactly eight positive divisors, including one and the
number itself. If two of the divisors are 35 and 77, what is the sum of all eight
positive divisors?
(CEMC)

Problem 2. Find gcd(12, 40, 68).

Problem 3. Find lcm(4, 35, 39)

Problem 4. Find the smallest positive integer k such that 504k is a perfect square
(CEMC)

Problem 5. What is the least number you can multiply 180 by so that the product
is a perfect cube? (Hint: If a number is a perfect nth power, then the exponent of
every prime in its prime factorization is a multiple of n)

Problem 6. Let N = 34 · 34 · 63 · 270. What is the ratio of the sum of the odd
divisors of N to the sum of the even divisors of N?
(2021 AMC 12B)

Problem 7. Let n = 231338. How many positive integer divisors of n2 are less than
n but do not divide n?
(1995 AIME)

Problem 8. A positive integer n is nice if there is a positive integer m with exactly
four positive divisors such that the sum of the four divisors is equal to n. How many
numbers in the set {2010, 2011, 2012, . . . 2019} are nice?
(2013 AMC 10B)

Problem 9. What is the sum of the exponents of the prime factors of the square
root of the largest perfect square that divides 12!?
(2013 AMC 12B)

Problem 10. Let S be the set of all positive integer divisors of 100,000. How many
numbers are the product of two distinct elements of S?
(2019 AMC 10B)
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